• KultureGeek
  • Comparateur de prix
       
iPhoneAddict
 iAddictv5Notre Application iPhone/iPad
  • Accueil Apps
  • Actualité Apple
  • Keynote Apple
  • Firmwares & iTunes
  • Contactez-nous
Accueil » Liste des Apps » Apps Universelles » Education » Atmospheric Model
1.3 iOS €Gratuit Richard Loda 0 0 The app uses a simple radiative transfer model for a planet with two leaky* atmospheric layers. It begins by calculating Te, the emission temperature of the planet by using the Solar constant and planetary Albedo. Te is called the Blackbody...
Atmospheric Model

Atmospheric Model

iOS Universel / Education

Gratuit au lieu de 0,99€
Obtenir sur l'App Store

The app uses a simple radiative transfer model for a planet with two leaky* atmospheric layers. It begins by calculating Te, the emission temperature of the planet by using the Solar constant and planetary Albedo. Te is called the Blackbody temperature because it is inferred by fitting a Blackbody curve to the observed outbound LWIR radiation.

You can choose any of the 9 planets in our solar system, or choose one of your own making. The app then uses 5 parameters for the chosen “base” planet: the Albedo (alpha), distance from the sun (r), extinction coefficients of two atmospheric layers (epsilon1, 2), and the solar constant S0 to calculate temperatures and radiative flux densities. One can modify these 5 adjustable parameters from their base values, and update the result. A flux diagram is generated showing the incoming short wavelength (SW), and outgoing long wavelength (LW) radiation. Two model run results can be saved and differences displayed. Also, runs can be saved to a .csv file for E-mail export and spreadsheet analysis.

Calculate the “natural” 33K greenhouse effect (compare Earth with and without an atmosphere), or change the extinction coefficients to see the effect of adding or reducing absorbing gasses. Predict what Mars might be like with an atmosphere, or see what would happen if the characteristics of our sun, albedo or planetary orbit change. This simple model can create hours of fun. The base parameter values for Earth nicely calculate Ts, Te, and T1 (upper troposphere) values, and the model correctly predicts Te’s for all the planets.

INSTRUCTIONS:
Load app, choose a “base” planet, segue with Update.
Click Update to calculate the temperatures and flux densities.
Segue to inspect the flux densities, and/or modify the base parameters to see changes.
Save and compare differences in 2 runs. (C/C0) values are in CO2 equivalents.
Save runs to .csv file for spreadsheet analysis.

USAGE TIPS:
Start with a base planet, but realize this simple 2 layer model cannot accurately predict the surface temperatures of the gas giants or Venus.
Pressing the Back button allows you to refresh your parameter or base planet choices.
Remember a 5 K change in Ts resulted in the Earth’s last Ice Age!
For convenience, the Test planet can be used to create your own set of parameters without entering a planet name.
Increasing the solar constant increases all temperatures. Increasing epsilon does nothing to Te, which depends only on S0, r, and alpha.
Press On/Off & Home takes flux diagram screenshot.
It is easy to remove a saved data file run (row) after import to spreadsheet.

RADIATIVE FORCING and CLIMATE SENSITIVITY:
Radiative forcing (dF) can be used to estimate the change in surface temperature (dTs) arising from that forcing using:

dTs = lambda x dF, where lambda is the Climate Sensitivity in K / (W/m2).

Forcing due to an atmospheric greenhouse gas such as CO2 can be expressed as:

dF (in W/m2) = 5.35 × ln (C/C0), where C is the CO2 concentration [CO2] and C0 is the initial concentration (in ppm).

For a single atmospheric layer Earth, changing the base value of epsilon = 0.78 to epsilon = 0.83 (d-epsilon = 0.05) gives an 3K T rise; roughly the equivalent of doubling [CO2] (and a forcing of 3.71 W/m2).

There has been a [CO2] increase between the years 1750 (280 ppm) and 2000 (380 ppm). Thus dF = 5.35 x ln (370/280) = 1.5 W/m2. dTs = lambda x dF = 0.8 (K/(W/m2)) x 1.5 (W/m2) = 1.2 K over that timeframe (d-epsilon 0.02 used).

* Leaky implies epsilon less than 1.

En voir plus...

Quoi de neuf dans la dernière version ?

Improved UI for both Light and Dark modes.

  • Screenshot #1 pour Atmospheric Model
  • Screenshot #2 pour Atmospheric Model
  • Screenshot #3 pour Atmospheric Model
  • Screenshot #4 pour Atmospheric Model
  • Screenshot #5 pour Atmospheric Model
  • Screenshot #6 pour Atmospheric Model

D'autres applications du développeur

PiSwift
PiSwift
/ iOS Universel
Stratsheet
Stratsheet
/ iOS Universel

Note

(0 note)

Détails sur l'application

Version
1.3
Taille
13 Mo
Version minimum d'iOS
12.0
Dernière mise à jour
21/01/2024
Publié par
Richard Loda

Newsletter App Store

Recevez chaque jour les meilleures promos

Actualité Apple

Image Apple dévoile DiffuCode-7B-cpGRPO, un nouveau modèle d’IA plus rapide
Apple dévoile DiffuCode-7B-cpGRPO, un nouveau modèle d’IA plus rapide
Image Un aperçu du labo d’Apple pour les tests de résistance des produits
Un aperçu du labo d’Apple pour les tests de résistance des produits
Image Capcom annonce le spin-off Resident Evil Survival Unit, qui sera uniquement disponible sur mobile
Capcom annonce le spin-off Resident Evil Survival Unit, qui sera uniquement disponible sur mobile
Image Air France teste l’usage des AirTags pour localiser un bagage perdu
Air France teste l’usage des AirTags pour localiser un bagage perdu
Partenaires : Actualité iPhone - Culture Geek
©2009-2025 i2CMedia | A propos |