• KultureGeek
  • Comparateur de prix
       
iPhoneAddict
 iAddictv5Notre Application iPhone/iPad
  • Accueil Apps
  • Actualité Apple
  • Keynote Apple
  • Firmwares & iTunes
  • Contactez-nous
Accueil » Liste des Apps » Apps Universelles » Utilitaires » Curve-Fit
6.0 iOS €Gratuit Bjarne Berge 0 0 'CurveFit' uses regression analysis by the method of least squares to find best fit for a set of data to a selected equation. The curve-fitting technique used in this app is based on regression analysis by the method of least squares. The free...
Curve-Fit

Curve-Fit

iOS Universel / Utilitaires

Gratuit
Obtenir sur l'App Store

'CurveFit' uses regression analysis by the method of least squares to find best fit for a set of data to a selected equation.

The curve-fitting technique used in this app is based on regression analysis by the method of least squares. The free version fits a straight line through a data-set using least squares analysis.

One In-App purchase is required to fit the other equations to the data set:
Straight Line : Y =C0 + C1*X (free)
Power Curve: Y =C0 + X^C1Exponential I: Y =C0 * EXP(C1*X)
Exponential II: Y =C0 * X * EXP(C1*X)
Hyperbolic: Y =(C0 + C1*X)/(1 - C2*X)
Square Root: Y =C0 + C1*SQRT(X)
Polynomial: Y = C0 + C1*X + --- + CN*X^N
Exponential Poly: Y =C0 * EXP(C1*X + --- +
Natural Log: Y =C0 + C1*(LN(X)) + --- +
Reciprocal: Y = C0 + C1/X + --- + CN/X^N

Most literature deals with least squares analysis for straight lines, 2nd degree polynomials, and functions that can be linearized. The input-data is transformed into a format that the can be put into linear forms with undetermined constants. These types of equations are applicable for least-squares regression.

The regression routine is needed for determining values for the set of unknown quantities C1, C2,- - - ,Cm in the equation:

Y = C1 x F1(X) + C2 x F2(X) + - - - + Cm x Fm(X)

The constants are determined to minimize the sum of squares of the differences between the measured values (Y1, Y2, - - - , Yn) and the predicted equation Yc = F(X) which is found by curve-fitting the given data.

The principle of least squares is to find the values for the unknowns C1 through Cm that will minimize the sum of the squares of the residuals:

n
∑(ri) = r12 + r22 + - - - + rn2 = minimum
i=1

This is done by letting the derivative of the above equation equal zero. Thereby there will be generated as many algebraic equations as given data points, and the number of equations will be larger than unknowns.

En voir plus...

Quoi de neuf dans la dernière version ?

Upgraded to latest IOS SDK
Minor Bug-fixes
Added 'Share' button to enable sharing, saving and printing of graph/data
Changed color-scheme to work in Dark Mode
Updated layout and fonts to work better with iPads (larger fonts/better layout)

  • Screenshot #1 pour Curve-Fit
  • Screenshot #2 pour Curve-Fit
  • Screenshot #3 pour Curve-Fit
  • Screenshot #4 pour Curve-Fit
  • Screenshot #5 pour Curve-Fit
  • Screenshot #6 pour Curve-Fit

D'autres applications du développeur

Gas-Leak
Gas-Leak
/ iOS Universel
AGA-3 Orifice
AGA-3 Orifice
/ iOS Universel
ISO-5167
ISO-5167
/ iOS Universel
Line-Fit
Line-Fit
/ iOS Universel
Oil&GasPVT
Oil&GasPVT
/ iOS Universel

Note

(0 note)

Détails sur l'application

Version
6.0
Taille
0.8 Mo
Version minimum d'iOS
12.3
Dernière mise à jour
23/11/2020
Publié par
Bjarne Berge

Newsletter App Store

Recevez chaque jour les meilleures promos

Actualité Apple

Image Apple TV+ fait presque carton plein aux Emmy Awards 2025 (merci Severance et The Studio)
Apple TV+ fait presque carton plein aux Emmy Awards 2025 (merci Severance et The Studio)
Image NeXT : il y a 40 ans, Steve Jobs fondait l’entreprise qui allait façonner le futur d’Apple
NeXT : il y a 40 ans, Steve Jobs fondait l’entreprise qui allait façonner le futur d’Apple
Image iPhone Air et eSIM : Free Pro évoque un support d’ici la fin d’année
iPhone Air et eSIM : Free Pro évoque un support d’ici la fin d’année
Image iPhone 17, 17 Pro et Air : premières photos des boîtes
iPhone 17, 17 Pro et Air : premières photos des boîtes
Partenaires : Actualité iPhone - Culture Geek
©2009-2025 i2CMedia | A propos |